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I n  order to prevent stagnation and improve water quality, the intakes of many 
water-supply reservoirs have the form of momentum jets directed approximately 
radially into the storage. An analysis which idealizes this flow as consisting of 
a turbulent jet issuing horizontally from a circular orifice into a large rotating 
basin of deep water shows that the jet path is a spiral whose length scale L 
depends upon the rate of rotation and the kinematic momentum of the jet. Good 
agreement is found with flow-visualization experiments when the basin depth h 
is ‘large’ (h/L 2 0.21). For small depths (h/L 5 0.024) the flow tends to be two- 
dimensional and the jet path is found to be straight. Full-scale reservoirs are 
usually shallow enough that the effect of the earth’s rotation on the jet path is 
likely to  be small. However these reservoirs are not inordinately shallow and 
tests with distorted hydraulic models are likely to show significant effects of 
rotation and can be misleading to the unsuspecting. 

1. Introduction 
In  a pioneering investigation carried out a t  Imperial College for London’s 

Metropolitan Water Board, White, Harris & Cooley (1955) studied means of 
controlling thermal stratification and stagnation in large reservoirs during calm 
weather. (Most of this work has been presented only in a private report to the 
client, but a portion has been described by Cooley & Harris 1954.) They proposed 
that the incoming water be concentrated into turbulent jets, whose momentum 
and entrainment would break up the stratification and mix and circulate the 
general body of water; most of London‘s storage reservoirs constructed in recent 
decades have employed this concept. Suspecting that the earth’s rotation might 
influence the jet-forced flow pattern, White et al. (1955) undertook some com- 
parative experiments with a & scale model of the existing Queen Mary Reser- 
voir, London. The results of these flow-visualization experiments are reproduced 
in figure 1 (plate 1).  In  both cases the water in the model reservoir was initially 
stationary with respect to the basin and photographs were taken of the dyed 
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inlet water a t  t,he same t’luee consecutive times after the initial efflux. The model 
reservoir is shown on the left-hand side of figure 1 without rotation and on the 
right-hancl side with rotation. The effects of rotatmion on the flow fields are quite 
evident. 

The present study is part of a general investigation a t  Imperial College into 
circulation and mixing characteristics in water-supply reservoirs. In this pre- 
liminary study of the effects of rotation on reservoir flow fields several of the 
complicat’ing features present in an actual reservoir, such as wind forcing, density 
stratification and effects of boundaries and topography, have been omitted. The 
idealized problem to be discussed concerns the flow fields generated by momentum 
jets directed horizontally into a large basin containing water of the same density 
which is rotating with a constant angular velocity fi about a vertical axis. The 
effect of rotation on the paths of the jets is the principal subject of study. 

The paper begins with an analysis of a ‘two-dimensional’ laminar jet emerging 
from a vertical slit. Although this case is of little practical interest i t  provides 
a theoretical framework for the consideration of turbulent jets. The path of a 
turbulent jet originating from a circular orifice in ‘deep water’ is then predicted 
theoretically. The term ‘deep water’ is subsequently defined in terms of a length 
scale which depends upon the initial jet momentum and the rate of rotation of 
the basin. The predicted jet paths are compared with the results of flow-visualiza- 
tion experiments. The paper concludes witjh a short discussion of shallow-water 
effects. 

2. Theoretical considerations 
Laminar j e t  emerging f r o m  a vertical slit 

I n  this section we mention briefly the results of an analysis (Savage & Sobey 1974) 
to determine the flow field, especially the path, of a laminar jet issuing from a 
vertical slit into a rotating basin of similar fluid. The flow field will be treated as 
essentially two-dimensional. From the work of Taylor (1917, 1921) and Proud- 
man (1916) i t  is well known that a steady rotation of a two-dimensional flow 
system does not affect the velocity distribution (as long as the pressure does not 
enter the boundary conditions). It is immediately evident that  the jet path is 
straight and the velocity field is the same as that which occurs when rotation is 
absent. However, i t  is useful to outline the analysis since it illustrates the physical 
balance established and also sets up a logical framework which can be employed 
to treat the case of a turbulent jet issuing from a circular orifice. 

The flow is assumed to take place in water of finite depth contained in a basin 
semi-infinite (2  > 0) in horizontal extent having a horizontal plane bottom (see 
figure 2). The basin rotates with constant angular velocity I2 about the vertical (2) 
axis. A thin jet emerges into the water (at rest with respect to the rotating frame) 
from a vertical slit contained in the vertical side wall (Z = 0) of the basin. 

Here attention will be restricted to  distances downstream of the jet orifice 
small in the sense that the integrated bed friction force arising from the jet is small 
compared with the initial jet momentum. The effects of bed friction will be 
neglected and changes in the surface elevation assumed to be small compared 
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FIGURE 2. Definition sketch for plane laminar jet in rotating basin. 

with the water depth. The flow field developed by the jet is therefore approxi- 
mately two-dimensional. 

It is convenient to use an orthogonal curvilinear co-ordinate system in which S 
is measured along the jet path and n is in the horizontal plane and normal to the 
jet path (figure 2). The equations for the steady motion of an incompressible 
viscous fluid in this system rotating with a constant angular velocity Q (Green- 
span 1968; Rosenhead 1963) are 

au/as+ a(hv)/an. = 0, (1 )  

h = 1 -nR(s),  (4) 

where ii and V are the velocity components in the S and .Ti directions respectively, 
v is the kinemat,ic viscosity, p is the density and p is the reduced pressure defined 
by 

p = p+pgz-ipn2(E2+ij2),  

in which fl is the fluid pressure and g is the gravitational acceleration. The curva- 
ture of the jet path E(S) is positive if d2?j/dZ2 is positive along the jet path. 

The present problem involves higher-order boundary-layer theory (Van Dyke 
1969) and can be treated systematically by the method of matched asymptotic 
expansions. In  the jet or boundary layer the variables are non-dimensionalized 
as follows: 
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where U* and L* are the characteristic velocity and length and the Reynolds 
number Re = U*L*/v. The dependent variables are expanded for large Re in 
powers of Re-&, for example 

(6) u(s,  n)  = ul(s, n)  + Re-h,(s, n)  + .. . . 
Substituting (5), (B),  etc., into (1)-(4) and equating coefficients of like powers of 
Re-$ yields the classical boundary-layer equations 

au,/as + av,/an = 0 ,  (7) 

ap,/an = 0 (9) 

(10) 

and the second-order boundary-layer equations, the one arising from ( 3 )  being 

- KU: + U,/RO = - ap2/an, 

where the Rossby number Ro = U*/2QL*. 
There is no first-order outer flow and thus in the first-order boundary-layer 

equations p1  = 0 and the appropriate solution to (7) and (8) is the classical solu- 
tion of Schlichting (1968, p. 170) for a two-dimensional incompressible free 
laminar jet, which may be expressed in t'erms of a first-order stream function 

11.1 as = 2sf tanhv, (1') 

where 9 = n/3sg. 

The second-order outer-flow variables in the curvilinear 3, ?i system are 

S = S/L*, iV = G/L:*,  U = Reiii /U*, V = Retv/U*, P = Retji/pU*2. ( 1 2 )  

The matching conditions are 

lim ~ ( 8 ,  N )  = lim (vl - n av,/an) = T $8-3 (13) 

and lim p 2 =  lim P. (14) 

N+O j, n++m 

n-f  m N-0 f 

Equation (13) states that the first-order inner flow induces a sink distribution 
along the S axis in the second-order outer flow. 

Substituting (12) into (1)-(4) yields the geostrophic second-order outer-flow 
equations, which can be solved to yield the pressure field P. Using the matching 
condition (14) i t  is found that 

lim p2(s,n) = ( T  21Ro)sf. 
11-rf w 

Integrating (10) over n and rearranging yields the following first approxima- 
tion to  the curvature: 

Using the first-order boundary-layer solution (11) and equation (15) in (16) i t  
is found that the first term in the numerator of the right-hand side of (16) is 
exactly balanced by the second term and hence the curvature is identically zero. 
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FIGURE 3. Definition sketch for round turbulent jet in rotating basin. 

It is convenient to think of the situation physically in the following way. The 
first-order inner (jet) flow induces a second-order outer flow by entrainment. 
The geostrophic outer flow generates a pressure field which exactly balances the 
Coriolis acceleration of the inner (jet) flow and thus the jet path is straight. The 
pressure difference across the jet manifests itself as a change in the free-surface 
level across the jet. The jet acts rather like a vertical wall or barrier in supporting 
the pressure differences. 

Turbulent jet emerging from circular ori$ce into deep water 

The case in which a turbulent jet emanates horizontally from a circular orifice 
into a deep rotating basin of water (figure 3) can be treated in a manner directly 
analogous to the preceding analysis. I n  the previous ‘two-dimensional’ case, the 
dominant balance in the n direction was between the Coriolis acceleration and 
the pressure forces and such that the jet path was a straight line. The three- 
dimensional jet in the present case does not extend through the full depth of the 
water. In  a very crude sense one may think of the jet as being unable to act as 
a barrier to support the pressure difference (between the two sides of the jet) 
necessary to straighten the jet path. One may determine the jet path in the spirit 
of the preceding two-dimensional laminar case using the ideas of higher-order 
boundary-layer theory. The present case involves an inner jet region where the 
flow is turbulent and a non-turbulent outer flow region. We cannot proceed in 
the mathematically logical and rigorous manner as in the previous case. For 



760 X. B. Savage and R. J .  Xobey 

example, the limit Re -+ co is not meaningful physically in the sense of blie laminar 
jet. However, we can treat the turbulent jet in a corresponding way by separating 
the flow into inner and outer regions and progress in a rather heuristic fashion 
guided by the laminar analysis. 

Consider the orthogonal curvilinear co-ordinate system ( S ,  ?i, 2 )  shown in 
figure 3. The equations of motion (three-dimensional) may be expressedin a form 
analogous to  (1)-(4). First let us determine the first-order ‘inner’ jet flow. 
Following the preceding analysis, to first order we neglect the effect of rotationand 
curvature on the jet development and take the mean axial velocity component Us 
to be the same as that which would exist in the absence of rotation. To first order 
the pressure is constant. Empirically i t  is found that for a turbulent round jet Us 
can be represented (cf. Schlichting 1968, p. 699; Newman 1967) as 

- U*L* 
S 

where k = In 2,  U *  and L* are characteristic velocity and length scales and 
I, = a% is the jet half-width (i.e. the position where Us is half the maximum centre- 
line velocity). The jet growth rate a is approximately 0.095 (Albertson et al. 
1950; Newman 1967). 

It is expedient a t  this stage to determine the component of velocity normal to 
the S axis a t  the ‘edge’ of the jet. It is convenient to use a cylindrical ( S ,  7, 0) 
co-ordinate system (recalling that to first order the jet path is straight). S’ ince 
the round-jet momentum flux 

J , . = p S m  Sm U;dzdTi 
-a - m  

is constant, (17) can be expressed as 

- 1 2kJ, 4 
us = sa  (-) np exp [ - k g2]. 

Integrating the continuity equation 

i a  aii, 
--(Tir?)+- = 0 r a?; a$ 

yields the normal velocity component a t  the ‘edge’ of the jet: 

[Ur]~-+m = -A/p,  (20) 

where A = a(JJ2knp)). 

To second order the momentum equation in the ?i direction is the same as (10). 
Integrating this equation (expressed in terms of the physical variables) over 
Z and E yields 

1 - 
j5(S,Co,Z)dZ- p(3, -co,z)dz , (21) 

= - [ s””, 11, 
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which can be solved for the curvature X(S)  of the jet path. The right-hand side 
of (21) represents the net pressure force in the E direction a t  the ‘edges ’ of the jet. 
It can be determined by considering the second-order ‘outer’ flow (there is no 
first-order outer flow). 

Imagine some limit process analogous to Re + 00 in the laminar case in which 
the inner jet flow shrinks to a curved line on the scale of the outer co-ordinates. 
Because of the first-order inner jet flow the second-order outer flow in effect is 
generated by a curved line sink, the geometry of which is as yet unknown. It is 
difficult to calculate the outer flow field due to the curved line sink and we shall 
merely determine the flow generated by a straight line sink. The approximation 
should be reasonable for distances from the sink axis which are small compared 
with the local radius of curvature of the sink (jet). The aim is to calculate the 
pressure field arising from the flow entrained by the jet. The second-order outer 
flow is inviscid but unlike the two-dimensional case the nonlinear convective 
terms are retained since the velocities are large near the sink. The equations of 
motion for the second-order outer flow expressed in a cylindrical co-ordinate 
system rotating with a constant angular velocity i2 are 

i a  1 au, au, 
--(RUB)+--+- = 0, R aR R ae as 

au, U,aU, .V$ 1 a p  u -+--+u,----~i2u,cose = --- 
I‘ aR R a8 aS R p aR’ 

(24) 
au, UeaUe aUe U U 1 ap 
aR R ae Sas R PR ae Un - + - - + U -+Re- 2 ~ U . s i n  8 = -- -, 

au, u,au, au, 1 ap 
uI<- i-- - + U - + 2Q(Uesin8- uRcos8) = --- 

aR R a8 as p a s  (25) 

where U,, U, and U, are the physical (dimensional) velocity components in the 
R, S and 8 directions and P is the pressure. The S axis, the axisof the jet (sink), is 
perpendicular to the axis of rotation. We seek a solution to (22)-(25) which 
behaves like a line sink for R+ 0. I n  analogy with (13) we have the matching 
condition 

lim U, = - lim U, = -AIR, (26) 
R-+O e m  

making use of (20). The appropriate solution is found to be 

U, = -A/R-2QScosO, U, = 2QSsin8, Us = 0, (27)-(29) 

P = - pA2/2R2- 2QpAS cos 0 - 2Q2pS2. (30) 

This flow corresponds to a sink flow (U, = -AIR) plus a horizontal cross-flow 
which increases linearly with S. Figure 4 is a sketch of the outer-flow streamlines 
in the cross-flow plane. 

The purpose of the analysis of the outer flow field is to determine the pressure 
field in order to evaluate the jet curvature from (21). I n  analogy with (14) 
there is a matching condition 

lim 2, = lim P. (31) 
-F+m R-tO 
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Thus in some overlap region 
jqz, E ,  Z) = P(R, s, 0). 

'. P R  cos 8 d8 for 7 i  positive, 

P R  cos 0 d0 for ii negative. 
Then p(S, Z, Z )  d2 = 

By substituting (30 )  in (32 )  one can then obtain 

J - m -  J - m  

By using (18) and ( 3 3 )  in (21) one finally obtains for the jet curvature 

where 

Given the curvature of the jet as a function of 3, the path of the jet centre-line 
in the Z, ?j plane can be determined. From the geometry of figure 5 

d&/dS = E ,  dZ = cos6d3, d?j = sinadz. ( 3 5 )  

Equations ( 3 5 )  may be integrated to yield 
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FIGURE 5 .  Definition sketch for jet path. 
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FIGURE 6. Theoretical jet path in deep water compared with turntable experiments. 
The symbols correspond to the following experiments: 0, al; n, a2; A, a3; v ,  a4; 
0 ,  b2;  0, b3;  a, b4;  +, c2. -, equations (37) and (38). 

and the jet path may be expressed in parametric form as 

where t = (b/n)j S, the natural length scale is 
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and C(t) and S(t) are the Fresnel integrals (Abramowitz & Stegun 1965, p. 300). 
The predicted deep-water jet path is thus a clotoid (see figure G ) ,  familiar from 
the Cornu spiral of wave diffraction theory. On physical grounds we might expect 
the analysis to be valid up to only a limited distance ( t  5 1)  downstream of the 
orifice before the jet has become wrapped inside itself and interactions between 
different parts of the jet occur. One of the reviewers has pointed out that for the 
sake of self-consistency the analysis is restricted to downstream distances rather 
smaller than this. The analysis implies that  the entrainment flow (altered by the 
Coriolis force) outside the jet region is small compared with the axial jet flow. 
The ratio of the outer cross-flow [equation (27)] to the axial centre-line velocity 
is T ( ~ / L ) ~ .  Thus to  be strictly correct the analysis is valid only for downstream 
distances such that T ( ~ / L ) ~  is small. From (37) and (38) the maximum penetration 
predicted for the jet path (the maximum value of C( t )  a t  t = 1.0) is 0.78L. 

The spiral path of the jet may be explained simply by referring to (18) and (2 1 ) .  
The jet curvature E(s) is seen to  be proportional to the volume flux of the jet 
divided by its kinematic momentum flux. Since the volume flux increases with 
distance owing to entrainment while the momentum flux is constant to first order, 
the curvature increases with 3 and the path is a spiral. 

3. Experimental study 
Plow-visualization experiments were conducted in the 5 m diameter rotating 

turntable facility in the Civil Engineering Hydraulics Laboratory a t  Imperial 
College, London. A detailed description of this facility is given by Sobey (1973). 
The turntable is based upon a large roller race on which is secured a rigid frame- 
work supporting an experimental basin. Rotation is by an electronic-hydraulic 
drive. 

A 3-1 mm nylon-tube jet orifice was centrally positioned along a 1-5 m vertical 
mall that was aligned a t  right angles to the radius through the jet orifice. For 
all experiments the jet orifice was located a t  the mid-depth and was carefully 
aligned to issue a t  right angles t o  the vertical wall through a final 7.5cm 
(25  diameters) length of straight tubing. The jet issued radially into a circular 
basin of diameter 5.04 m. 

The jet, discharge was provided by means of an air-pressured supply that was 
mounted on and rotated with the turntable. The discharge was measured by 
a Gallenkamp Gapmeter Lab-kit rotameter. The jet water was coloured with 
Process White, a water-based artist's paint. Special care was taken to ensure that 
the density and temperature of the dye solution and of the water in the turn- 
table were the same, methyl alcohol being added to the dye solution where 
necessary. The discharge from the orifice was small in relation to the volume of 
water in the turntable and the residence times (initial basin volume/jet discharge, 
V,/Q,,) were a minimum of 270 times the corresponding rotation periods 2nlC.l: 
no fluid was extracted from the rotating basin during the experiments. 

A photographic tripod was constructed over and fixed to  the rotating turntable. 
An automatic battery-powered Hasselblad 500 E L  camera with a 50mm Zeiss 
Distagon 3'4 wide-angle lens was mounted 6.Om above the basin bed. Plan 
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h 
Expt  (cm) 

a1 25 
a2 25 
a3 25 
a4 25 
b2 25 
b3 25 
b4 25 
c l  2.5 
c2 7.5 

Qo 

3.17 
5.08 
8.17 

4.67 
8.17 

6.9 1 
5.75 

(cm31s) 

10.4 

11.3 

2 n p  
(9) 

207.8 
206.8 
209.4 
211.7 
102.5 
100.3 
101.2 
251.6 
233.6 

V B  

2nQo 
7380 
4630 
2870 
2210 

10170 
5930 
4370 

27 1 
1080 

- 
Re 

1300 
2090 
3360 
4280 
1920 
3360 
4660 
2830 
2360 

JJP  
(cm4/s*) 

177 
455 
910 

1480 
385 
910 

1720 
650 
452 

L 
(cm) 
69.3 
87.8 

105.0 
119.1 
59.2 
72.7 
85.9 

105.8 
93-1 

h lL  
0.36 
0-28 
0.24 
0.2 1 
0.42 
0-34 
0.29 
0-024 
0.081 

LID 
0.14 
0.17 
0.21 
0.24 
0.12 
0.14 
0.17 
0.21 
0.18 

TABLE 1.  Experiments with turbulent round jets. Re based on average velocity and diameter 
of orifice. Velocity profile at orifice assumed to be parabolic for Re < 2300 and t o  follow 
a )-power law for Re > 2300 in calculation of J ,  (Schlichting 1968, p. 560). 

positioning within the rotating basin was facilitated by the delineation of a 
20cm square grid using a surveyor’s chain and theodolite. This grid could be 
reconstrncted for photographic purposes in the horizontal plane of the top of the 
basin wall (28 cm high) by stretching white cord between the appropriate points. 

The water within the turntable was spun up to rigid-body rotation before the 
jet was discharged into the rotating basin. Approximately eight photographs 
of each jet  flow were taken a t  suitable time intervals thereafter over approxi- 
mately two revolutions of the turntable. The effect of the finite horizontal geo- 
metry of the basin should not be significant for such times; the relevant non- 
dimensional parameter (LID, where L is the length scale defined by (39 )  and D is 
the basin diameter) had a maximum value of 0.24 for the experiments. 

Flow rates Q0 varied from 3.2 to 11.3 cm3/s, rotation periods 2n/Q from 101 to 
252 s and basin depths h from 2.5 to 25 cm. The full details of the experiments are 
given in table 1.  

The photographic negatives were analysed by enlarging them with a Leitz 
projector to an appropriate scale defined by the length scale L computed from (39 )  
and then tracing off the non-dimensional centre-line paths to a scale correspond- 
ing to figure 6. The definition of the path of the jet centre-line was a subjective 
process, but a reasonably consistent result was obtained by building up the jet 
path progressively through the eight or so exposures for each experiment. 

Round turbulent je t  in deep water 

The series a, and b experiments were undertaken to evaluate the above theoretical 
prediction of the path of the jet centre-line in ‘deep water’. The water depth h 
was set as large as possible (25 cm) and only the jet discharge and the rotation 
period were varied. Figure 7 (plate 2) shows experiment b3 at various stages of 
development and is typical of both series of experiments. 

Representative points from the observed paths for both series of experiments 
are shown, together with the theoretical prediction, in figure 6. The agreement 
is seen to be good, even beyond the point of maximum penetration. As mentioned 
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above, the present analysis is self-consistent only for T ( S / L ) ~  small. The good 
agreement beyond the point of maximum penetration is to some extent fortuitous 
but a t  the same time typical of asymptotic analyses. 

Round turbulent jet in shallow water 

I n  very shallow water (of large horizontal extent), jet growth in the z direction 
would be restricted by both the bed and the free surface, no such severe restriction 
existing in the n direction. The jet would then become approximately two- 
dimensional and might support a larger pressure difference across its width (as 
does the plane laminar jet), which would tend to straighten the jet path. Alterna- 
tively, in very deep water (of large horizontal extent) the theoretical clotoid path 
should be valid for the initial development of the jet. 

The relevant non-dimensional depth parameter is h/L, which has been 
evaluated for each experiment in table 1. This parameter varied from 0.21 to 
0.42 for the series a and b experiments and the above results indicate that the 
lower value of 0.21 can be safely taken as a definition of ‘deep water’ in the 
present context. It is of course possible that this threshold value is even lower. 

Two further experiments, c l  and c2 of table 1, were undertaken to obtain some 
preliminary clarification of the influence of shallow water. Figure 8 (plate 3) illus- 
trates the shallow-water jet development of experiment cl (h/L = 0.024) a t  
various times. For this experiment the natural length scale L was 105*8cm, 
the maximum penetration of the ‘deep water’ jet path being 0-78L = 82*5cm, 
or about 4 of the grid squares in figure 8. Although there was some tendency to- 
wards a right-hand spiral path a t  small times (figures 8a-c) the path straightened 
out a t  larger times (figure Sf), implying that the jet was able to support a pressure 
difference across itself sufficient to balance the Coriolis accelerations. This con- 
jecture is supported by a flow-visualization investigation (figure 9, plate 4) of 
the bottom boundary layer in this flow field using Process White, which undiluted 
is a heavy viscous slurry. The wall streamline orientations in the flow being 
entrained (the jet was only lightly coloured here) differed significantly across 
the jet, giving a clear indication that the pressure fields were different also. 

For shallow water (small h/L) the bed friction strongly affects the overall jet 
development. Gadgil(1971) has studied laminar quasi-geostrophic jets and found 
that because of dissipation in the Ekman layers the jets cannot penetrate beyond 
a certain point. Although the jet initially entrains fluid near the exit, there is 
a station where the entrainment is zero, after which the jet ejects fluid. Prior to 
the maximum penetration there is a pronounced lateral spreading of the stream- 
lines. Figure 8 [particularly ( e )  and (f)] seems to indicate this type of behaviour 
but it is difficult to obtain quantitative velocity-field data from flow visnaliza- 
tion alone. One of us (R.J.S.) is a t  present conducting a detailed experimental 
study of the development of turbulent jets in shallow water and the results are 
forthcoming. 

The remaining experiment ( c 2 )  was conducted at an intermediate relative 
depth hL of 0.081. Selected points from the observed path are shown in figure 6 
together with points from the ‘deep water’ experiments and the theoretical 
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Depth ‘Dia- 
Capacity h meter’,D J,/p L 0.78L - 

Reservoir (m3x 106) (m) (km) (m4/sa) (km) h./L D 
Queen Mary, 1925 30.6 11.6 1.8 6.4 0.70 0.017 0.30 
Queen Elizabeth 11, 19.5 17-9 1.2 14.7 0.86 0.021 0.56 

Wraysbury, 1972 34.5 20.4 1.5 95.6 1.36 0.015 0.71 
Dachet, 1974 37.7 22.9 1.5 10.4 0.78 0.029 0.41 

TABLE 2. Typical figures for London Metropolitan Water Board reservoirs. Latitude 
for all four reservoirs is 51.4” N, giving 2 0  sin (D = 1.14 x 

1962 

rad/s. 

clotoid path. It appears from the observed straightening of the jet path that this 
jet flow is able to support a pressure difference, but not one that is sufficient to 
balance the Coriolis accelerations. 

4. Concluding remarks 
The theoretical analysis of a turbulent jet issuing horizontally from a circular 

orifice into a large rotating basin of deep water predicts that the jet path is a 
clotoid which has a length scale 

The predicted path was found to agree closely with the experimentally measured 
paths when the non-dimensional depth was ‘large ’ (h/L 7 0-21). When the depth 
is ‘small’ (h /L 2 0.024) the confining effects of the upper free surface and the 
basin bed tend to make the mean flow two-dimensional. In  this case rotation has 
little effect on the velocity field (see Taylor 1917, 1921; Proudman 1916) and 
the jet path is straight, as it would be in the absence of rotation. 

These results are of considerable importance in connexion with hydraulic 
model tests to study the effects of various jet-inlet locations on the mixing and 
circulation patterns in water-supply reservoirs, for example the studies ofWhite 
et al. (1955) mentioned previously (see figure 1). Typical parameters including 
0.78LID and h/L for the prototype reservoirs of London’s Metropolitan Water 
Board are given in table 2 (see also Sobey 1973). (In the determination of L, R in 
(39) has been replaced by R sin 0, where 0 is the latitude.) The values for h/L are 
all small and it is expected that the earth’s rotation would have only a small effect 
on the jet paths and hence the overall circulation patterns. It should be noted 
however that the detailed structure of the slow-moving gyres or swirls on both 
sides of the jet and forced by it is dependent upon rotation (Sobey 1973). It is 
common practice in hydraulic modelling to distort thevertical and horizontal 
scales to ensure that the depths are large enough to produce turbulent flow 
throughout most of the model. If only moderate distortions were performed, say 
the vertical scales were increased by a factor of 5-10, then h/L for the model 
would be in the region where rotation would have an appreciable effect on the 
flow patterns and the model tests could be quite misleading. Some care is necessary 
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if proper hydraulic modelling is to be achieved and obviously relatively large 
rotating model basins are required if low Reynolds number effects are to be 
avoided in undistorted models. Further work is needed to investigate the cases 
where density differences exist between the inlet jet and the reservoir water. 

The major part of this work was carried out in the Hydraulics Laboratory, 
Civil Engineering Department, Imperial College, London under the direction of 
Professor J. R. D. Francis. This paper was completed with the support of the 
Science Research Council (G.B.), the National Research Council of Canada and 
the Deutsche Forschungsgemeinshaft (through the Sonderforschungsbereich 80, 
Karlsruhe University). 
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